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Abstract. A simplified relativistic configuration interaction method is used to calculate the dielectronic
recombination cross sections and rate coefficients for heliumlike carbon. In this method, the infinite resonant
doubly excited states can be treated conveniently in the frame of Quantum Defect Theory. Our calculated
cross sections are in agreements with the experimental measurements except for the 1s2lnl′(n = 6, 7)
resonances. The total energy-integrated cross sections and rate coefficients over all dielectronic resonances
are in agreements with the experimental measurements within 10% percent.

PACS. 34.80.Kw Electron-ion scattering; excitation and ionization – 34.80.Dp Atomic excitation and
ionization by electron impact

1 Introduction

Dielectronic recombination (DR) can be regarded as a res-
onant radiative recombination process. As a free electron
with a specific kinetic energy collides with an ion Aq+, one
of the bound electrons of the ion Aq+ is excited from nala
orbital into nrlr orbital, at the same time, the free elec-
tron is captured into an unoccupied orbital nl and forms
a resonant doubly excited state; subsequently, the reso-
nant doubly excited state decays into a non-autoionizing
state through radiative transition processes. Its impor-
tance in influencing the ionic balance in high temperature
plasmas has been known for many years [1]. Since then,
many theoretical methods have been developed, such as
distorted wave method [2,3], close coupling methods [4,5],
non-relativistic single- and multi-configuration [6–9] and
relativistic multi-configuration methods [10,11]. In these
calculations, it is difficult to obtain the DR rate coeffi-
cients since they involve many resonant doubly excited
high Rydberg states. Quantum Defect Theory (QDT) has
been developed to treat the atomic processes involving
high Rydberg states [12–14], and was also used to study
the DR cross sections and rate coefficients for high Ryd-
berg states by extrapolation [15–17]. In the frame of Quan-
tum Defect Theory (QDT), we have developed a simpli-
fied relativistic configuration interaction (SRCI) method.
In this method, all the resonant doubly excited high Ry-
dberg states can be treated in a unified manner by in-
terpolation (rather than extrapolation), and then the DR
cross sections and rate coefficients can be obtained con-
veniently. We have calculated the DR cross sections of
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the hydrogen-like ions [18–20], and the results are in good
agreement with the experimental measurement [21,22]. In
the present paper, the SRCI method is extended to study
the DR processes of heliumlike carbon ion. As an impu-
rity, the carbon ion can induce the radiative cooling of
magnetically confined plasma, and as a few-electron sys-
tem, the heliumlike carbon ion is usually a testing ground
for theoretical DR calculations, so there exist a lot of the-
oretical and experimental works on the DR processes of
heliumlike carbon ion [23–30]. Recently, Kilgus et al. [31]
measured the cross sections of the processes with a high
resolution at the heavy-ion storage ring TSR, and their
theoretical calculations reproduced well the experimental
cross sections, except in a region extending about 5 eV be-
low the almost degenerate excitation thresholds 1s2s(1S)
and 1s2p(3P ). In this energy region, the resonant doubly
excited states can autoionize to the excited states of the
initial recombining ion, namely, the Coster-Kronig channel
is open [26,32], which cause a new difficulty for theoreti-
cal calculations. In this paper, using our SRCI method, we
also studied this DR process. The theoretical cross section
and rate coefficients are presented and compared with the
experimental measurements, which is regarded as a testing
of our theoretical method.

2 Theoretical method

The DR process of heliumlike carbon has the form

e− + C4+(1s2)←→ C3+(1snrlrnl)
∗∗

→ C3+(1s2nklk)∗ + hν. (1)
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In the present paper, we study the DR processes for the
doubly excited states with nr = 2. For the 1s2pnl dou-
bly excited Rydberg states, the Coster-Kronig transition
1s2pnl → 1s2s + e− becomes energetically possible for
certain large n [26–30,32] , which is included in our calcu-
lation. The cross section of a resonant capture process, in
which the C4+ ion in initial state i(1s2) or i(1s2s)(Coster-
Kronig transition) captures a free electron with a specific
energy εi and forms the C3+ atom in the resonant doubly
excited state j(1snrlrnl), can be treated in the isolated
resonance approximation ( atomic unit is used through-
out unless specified),

σcij =
π2~3

meεi

gj

2gi
Aajiδ(ε− εi), (2)

where gi and gj are the statistical weight of the state i and
j, respectively. Aaji is the Auger decay rate (inverse res-
onant capture), which can be calculated using the Fermi
golden rule.

We construct the configuration wavefunctions
φ(ΓJM) (Γ denotes the quantum numbers 1snrlrnl and
parity) as anti-symmetrized product-type wavefunctions
from central-field Dirac orbitals with appropriate angular
momentum coupling [33]. All relativistic single-electron
wavefunctions (bound and continuum) are calculated
based on the atomic self-consistent potential [34,35].
An atomic state function for the state j(1snrlrnl) with
total angular momentum JM is then expressed as linear
superposition of the configuration wavefunctions with
the same principal quantum numbers (nr, n) and orbital
angular momentum quantum numbers (lr, l)

ψj(JM) =
m∑
λ=1

Cjλφ(ΓλJM). (3)

Here m is the number of the configuration wavefunc-
tions, and the mixing coefficients Cjλ for state j are ob-
tained by diagonalizing the relevant Hamiltonian matri-
ces [33]. The SRCI is much simpler than the relativistic
multi-configuration methods [10,11]. It has included the
main configuration interactions and is better than the rel-
ativistic single-configuration interaction methods. When
(nr,lr,l) are fixed and n varies from bound to continuum
state, all the resonant doubly excited states with the same
J and coupling scheme will form a channel. In our SRCI
method, the channels can be easily classified, and the tran-
sition matrix elements in the channels can be conveniently
calculated by interpolation (rather than extrapolation).

The free state is chosen as the single configuration
wavefunction. Then we have

Aaji =
2π

~
|
m∑
λ=1

CjλM
a
ijλ|

2, (4)

where the Auger decay matrix element Ma
ijλ is defined as

Ma
ijλ =< φ(ΓλJM)|

∑
s<t

1

rs,t
|Ψiεi > . (5)

In the channel, the energy-normalized matrix element can
be defined as

M
a

ijλ = Ma
ijλ(ν3/2

n /q), (6)

here (ν3
n/q

2) is the density of state [36], νn = n − µn,
and µn is the corresponding quantum defect. This energy-
normalized matrix element M

a

ijλ varies smoothly with the
electron orbital energy in the channel [19,20]. When the
energy-normalized matrix elements of a few states (includ-
ing one continuum state) in a channel have been calcu-
lated, the Auger decay matrix elements of infinite discrete
states of that channel can be obtained by interpolation.
On the other hand, the mixing coefficients Cjλ in (4) are
almost unchanged whithin a channel [19,20]. We can use
the mixing coefficients of a state with a certain high prin-
cipal quantum number to approximate that of those states
with higher principal quantum number. From the expres-
sion (4), the Auger rates and capture rates (by detailed
balance) of the infinite resonant doubly excited states can
be obtained conveniently.

The resonant doubly excited state may autoionize with
a rate Aaji by reemitting an Auger electron or decay radi-
ately into a lower energy state k with a radiatively rate
Arjk, which is defined as

Arjk =
4e2ω

3~c3gj
|
m,m′∑
λ,λ′=1

CjλCkλ′M
r
jk|

2, (7)

where ω is the photon energy, the radiative transition ma-
trix element is defined as

Mr
jk =< φ(ΓλJM)|T (1)|φ′(Γ ′λJ

′M ′) > (8)

and here T (1) is the electronic dipole operator [33].
For the radiative process with certain final state

k(1snklk), the resonant doubly excited states with the
fixed (nr, lr, l) and different orbital energy form a channel.
In the channel, the energy-normalized radiative transition
matrix element is defined as

M
r

jk = Mr
jk(ν3/2

n /q). (9)

This energy-normalized matrix element varies slowly with
the electron orbital energy [19,20]. By interpolation, all
the energy-normalized matrix elements of infinite discrete
states in a channel can be obtained. From the expression
(7), we can obtain all the radiative rates in the channel [37,
38].

The resonance energy εi can be calculated under the
frozen core approximation [39]. Then, we can obtain the
DR cross sections for any resonant doubly excited states
conveniently,

σij;k =
π2~3

meεi

gj

2gi

AajiA
r
jk∑

k′ A
r
jk′ +

∑
i′ A

a
ji′
δ(ε− εi)

≡ Sij,kδ(ε− εi). (10)

Here the summation i′ is over all possible Auger final
states of C3+ (j), and the summation k′ is over all possible
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states of C3+ whose energy are below state j. δ(ε− εi) is a
delta function. Sij,k is the DR strength. If the energy dis-
tribution of the incident electron is Maxwellian, the DR
rate coefficient can be written as,

αDRij;k = (
2π~2

meκT
)3/2 gj

2gi

AajiA
r
jk∑

k′ A
r
jk′ +

∑
i′ A

a
ji′
e−

εi
κT . (11)

Here κ is the Boltzmann constant and T is the temper-
ature of the electron. The total rate coefficient can be
written as αDRi =

∑
j,k α

DR
ij;k.

In order to compare with the experimental results, the
calculated cross section should be convoluted with a Gaus-
sian distribution with an energy resolution Γ . The convo-
luted cross section is

σDRt (ε) =
∑
j

Sij;k√
2πΓ

exp[−
(ε− εj)2

2Γ 2
]. (12)

In this work, the experimental resolution width 2.1 eV
(FWHM) is adopted.

3 Results and discussion

Using the above SRCI method, we have studied the DR
processes for Heliumlike carbon and obtained the cross
sections and corresponding rate coefficients. The calcu-
lated cross sections and the comparison with Kilgus et al.’s
experimental measurements [31] are shown in Figure 1. As
the principal quantumn n of the resonances 1s2lnl′(n =
2, 3, 4) increases, the peaks of the cross sections increase.
These features are similar to that of the low Z hydrogen-
like DR [20], which is different from the behavior of medi-
ate Z hydrogenlike DR [19], and don’t have the n−3 scal-
ing relation. The reason is as following: for the low Z ion,

Aa � Ar, we have σDR ∝
Aaji

∑
k A

r
jk∑

k′ A
r
jk′ +

∑
i′ A

a
ji′
∼
∑
k A

r
jk

(Coster-Kronig transition is neglected). For the doubly ex-
cited states 1s2lnl′, the main radiative contributions come
from the transition 1s2lnl′→ 1s2nl′, which is independent
on the principal quantum number n. So the n−3 scaling re-
lation can’t be retained. Compared with the experimental
measurements [31], the positions and strengths of our cal-
culated peak are in general agreements with the measure-
ments. Looking at the details, for the 1s2l2l′ resonances,
the peak with lower energy is a little less than the peak
with higher energy, which is in accordence with Bellantone
et al.’s single calculations [28] and Beigman et al.’s Z ex-
pansion calculations [31], but it is different from Kilgus
et al.’s experimental measurements and calculations [31].
This may be due to the smaller mixed configuration num-
ber included in our SRCI, Bellantone et al.’s and Beigman
et al.’s calculations.

Because of the effects of angular momentum cou-
pling and configuration interaction, the resonances 1s2lnl′

are split into many sublevels. For n ≥ 5, we find that
some sublevels are open for the 23Sεl Coster-Kronig
channel(non-relativistic notations have been used), while

Fig. 1. The DR cross sections of heliumlike carbon for the
1s2lnl′(n = 3, 4, 5, ...∞) resonances. Full line: the convoluted
theoretical cross sections; Dashed line: Kilgus et al.’s experi-
mental cross sections [31].

others are closed; for n = 8 resonances, some sublevels
are open for the 21Sεl Coster-Kronig channel; for n > 8
resonances, some sublevels are open for the 23Pεl Coster-
Kronig channel. In Figure 1, there exists a “valley” near
the n = 9 resonances, which is very different from the
smooth high-n behavior of the DR cross section for me-
diate Z heliumlike ion [26,40]. This is because the 23Pεl
Coster-Kronig channel is opened. Our calculated DR cross
sections for the 1s2lnl′(n = 6, 7) resonances, as well as the
theoretical results in reference [31], are significantly larger
than the experimental measurements [31], which will be
discussed after the integrated cross sections are compared
with experiments.

Our energy-integrated resonance strengths and com-
parison with other theoretical and experimental results are
displayed in Table 1. Because of the effect of the Coster-
Kronig channel, the energy-integrated resonance strengths
for 1s2lnl′ resonances decrease rapidly with n as n > 5.
But the contribution from the high Rydberg resonances
(n ≥ 9) to total energy-integrated resonance strengths is
still as large as about 10%. Also, the n−3 scaling relation
is not retained in this case. So, a proper method to treat
the high Rydberg resonances, such as our SRCI method,
is needed. Compared with Kilgus et al.’s experiments [31],
our calculations for the 1s2lnl′(n = 6, 7) resonances,
which give a little improvement over Kilgus et al.’s theo-
retical results [31], still overestimate the energy-integrated
resonance strengths. The reason may be as following: the
appearances of Coster-Kronig channels increase the cal-
culated difficulties for Auger rates, which may be one
reason for overestimating cross sections. Not including
the bound-continuum and continuum-continuum config-
uration interactions may be another reason. Since the
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Table 1. The energy-integrated strengths (10−21cm2eV) for
DR of C4+ via resonances 1s2lnl′.

n Theorya Theoryb Theoryc Theoryd Expt.b

2 95.8 96.2 102.9 93.2 89(2)
3 264.4 274.9 188.6 282.8 260(4)
4 218.4 223.0 163.3 227(4)
5 97.8 110.2 57.5 97(2)
6 68.5 81.8 47(2)
7 58.3 69.0 33(2)
8 18.6 18.6 21(4)
≥ 9 80.4 90.8 75(4)

Total 902.2 964.5 784.4 849(8)

aPresent work
bKilgus et al. [31]
cBellantone et al. [28]
dBeigman et al. [31], Vainshtein et al. [23]

Auger electron energy is near zero for the Coster-Kronig
channels, it is hard to determine the appearance of the
Coster-Kronig channels and to calculate the Auger rates
with high accuracy. This may introduce numerical er-
rors in our calculations of DR processes. The configu-
ration interactions (bound-bound,bound-continuum and
continuum-continuum), not included in our SRCI method,
may introduce an inaccuracy in our calculation.

The total energy-integrated cross sections over all di-
electronic resonances are in agreement with the experi-
mental measurements within 10% percent, as shown in
Table 1. We also calculated the total rate coefficients,
which are related directly to the total energy-integrated
cross sections, and compare them with other theoretical
works [31,28,26] and experimental measurements [31] as
shown in Figure 2. Although there exists a relatively large
error for the 1s2lnl′(n = 6, 7) resonances, our calculated
rate coefficients are in agreement with the experimental
measurements within 10% percent.

It should be noted that because of the configuration
interaction and other effects not considered in our calcu-
lations, the individual transition probabilities Aa and Ar

and even a few cross sections such as the 1s2lnl′(n = 6, 7)
resonances may not be accurate, but our calculated total
energy-integrated cross sections and rate coefficients are
in agreement with the experimental measurements within
10% percent. This is because the errors and variations
in the calculations of the individual transition probabili-
ties tend to cancel in the evaluation of DR cross sections
and rate coefficients, and total energy-integrated cross sec-
tions and rate coefficients are not too sensitive to errors
made in the calculation of individual transition probabili-
ties [17,41]. The calculated accuracy for rate coefficents in
our SRCI method can be sufficient for most practical ap-
plications. Due to the fully relativistic treatments in our
calculation, our SRCI method can also be used to study
the DR processes for high Z elements, which will be dis-
cussed in other future papers.

Fig. 2. The total rate coefficients of heliumlike carbon for the
1s2lnl′(n = 3, 4, 5, ...∞) resonances. a: Kilgus et al.’s theoret-
ical results [31]; b: Present theoretical results; c: experimen-
tal results obtained by the cross sections digited from Kilgus
et al.’s work [31]; d: Bellantone et al.’s theoretical results [28];
e: Chen’s theoretical results [26].
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